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An integrable problem on the motion of a rigid body, fixed at the center of 
mass, under the action of a linear force field, being the classical approxima- 
tion for the central Newtonian field, is studied. The bifurcation set, viz., the 
collection of critical values of the integral mapping, is found, The types of 
integral manifolds in nondegenerate cases are indicated. 

1. S t a t e m e n t o f t h e p r o b 1 e m. Let a rigid body with a fixed cen- 
ter of mass 0 be placed in a force field induced by an attracting material point P. 
To the body we attach a cartesian coordinate system with axes directed along the prin- 
cipal axes of inertia of the body. The corr~po~ng moments of inertia are denoted 
by A, B, C. The ellipsoid of inertia is taken to be trlaxial and, without loss of 
generality, it is assumed that 

A<B<C (1.1) 

We introduce the unit vector 

Y==ZiP/lOPl (I.21 

fixed in space, and we denote its components in the moving axes by 

V17 YZI y3 
(I*31 

Let 

Pt Q, r (1.4) 
be the components in those same axes of the body’s instantaneous angular velocity vec- 
tor. By virtue of the relation 

Yr2 + Ys2 + vss = 1 (1.5) 

the space of variables (1.3) and (1.4) is a five-dimensional manifold MS = s2 X 
R3. The dynamic system on M5, describing the rigid body’s motion, is specified 

by the Euler -Poisson equations 

A$ = (B - C) (gr - ~2~2~3)~ s = rva - qv3 (1.6) 

(ABC, P4r, 123) 

In the expansion of the potential energy we hdve retained only the terms quadratic in 
variables (1.3), so that U = 1/2 (Av12 + Bv,’ -5 cv3*) e2 (parameter e depends 
upon the distance OP and the gravitational constant), we note that parameter e 
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can be given any nonzero value by chooshg appropriate measurement units for variabl- 
es (1.4) and time t . In what follows it is convenient to take G = 1 / (ABC). 

Equations (1.6). in addition to the classical area and energy integrals 

J = Apv, + Bqvz + Crv, (1.7) 

H =+(Ap2+Bq2+Cra) ++@+&g) (I.81 

admit of the quadratic integral first mentioned by Clebsch in the mathematically equiv- 
alent problem [l] 

K = J#ap2 +~2q2+C2~2)_+(~+_s+~) (1.9) 

System (1.6) with integrals (1.8) and (1.9) admit of a simultaneous change of sign in 
the quantities p, q, vs. The sign of the constant area 

J =S (1.10) 

reverses, and, hence, it suffices to study the case s > 0. 
We pass from the variables (1.4) to the new variables vl’, v,‘, va’ by the form- 

Ulas 
l - v1 - rv2 - qv,, v2’ = pvs - rvx, v; = qvl - pv2 f 1.11) 

Such a change is invertible on set (I. 10) and the inverses are determined by the Kolosov 
formulas [Z] 

P= 
Cv*v2’ - Bv’gvg’ t_ slrl AY&' - CV$V~’ + sv* 
A@ + Bv2a + Cvas ’ q = AvIa + Bva* + Cvs2 

(1.12) 

r = 
BY& - dv,v2’ + sva 

/lv,a + Bva* + cv,s 

By (1. Il), vlvl’ + vsv2’ + vavs’ = 0, so that the space of variables (1.3) and 
(1. U) is a tangent lamination of unit sphere (1,5); subsequen~y denoted 2’ (S2). 

Weset a=1/A, b=IfB,c=I/C,D=bcv,“+cuv,2fabv,2. 
Under substitution (1.12) the functions (1.8) and (1.9) become 

H =: -& (avia + bvz” + CV~*’ + abcs2) + -kJ (I.. 13) 

K== & (a2v1” + b2v2” + c~v~‘~ -(avlvl’ + bv2v2’+ CV~V~.)2 + (1.14) 
2s [a2 (b - c) v2vsvx* + b2 (c - a) vsv1v2* + c2 (a - b) v1v2vs’] + 

ss (b2c2v12 + c2a2va2 + a2b2vs2)} - ‘j2 (av12 + bvz2 i_ cvs2) 

Substitution (1.12) leads Eqs. (1.6) into a system of second-order equations defining a 
vector field X on T (s2). This vector field is Hamiltonian in some symplectic iat+ 
tice [S] and is generated by ~a~lto~~ (1.3). In this same lattice the Poisson brack- 
ets 

(H, K) %G 0 (1.15) 
Field X is called a reduced system. The reduced system describes the motion of vec- 
tor (1.2) in a basis connected with the rigid body and, by the same token, defines the 
body’s motion to within a rotation around the axis 0~. 
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For each pair (k, h) E R2, by Ik,h we denote a subset in T (S2), delineated 
by the relations 

H=h, K=k (1. IS) 

Obviously, Ik,h is an integral surface of the reduced system and is a smooth manifold 
of dimension 2 for almost all (k, h) . 

A further problem is to find the set Z C R2 of points (k, h) such that the top- 
ological type of Ii.,h is changed on passing through these points, and to compute this 
type for the remaining points of Ra . More rigorously, we define the bifurcationset 
Z as the set of points (k, h) E R2 over which the mapping 

I = K x H: T (S2) + R2 (1.17) 

is not locally trivial. Similarly [S] it can be shown that Z coincides with the set 
of critical values of (1.17); if (k,, 

the manifold1t,& diffeomorphic with I 
h,) E Ra \ 2, then for(k,h) clwstoi(k,, ho) 

ko,hosmoothly withrespect to k and F,. In particul- 
ar, the differentiable type of Ik,h is preserved in the connected component of R2 
\ Z . According to (1.15) the Arnol’d -Liouville theorem [5] is applicable and, 

consequently, for (FE, h) E R2 \ 2 either Ik,h = 4 or each connected com- 

ponent of Ik,h is diffeomorphic with a two-dimensional torus the motion on which 
is conditionally periodic, so that it remains to find only the connectivity of Ik,r, in 
the noncritical cases. 

2. Analytic specification of the bifurcation set. 
On sphere (1.5) we introduce the local coordinates 

2 _ (a - A) (a - P) 
Vl -- 

(a - b) (a -c) ’ v2 
2 = (h---b)@- P) 2 __ o+ - c) (CL -c) 

(a -b)(b-- c) ’ v3 - (a -cc) (b-c) 

where A and j_& are the elliptic Kolosov variables. By (1. l), c < p < b .< h < 
a. 

N o t e s. 1”. The functions h (E) and EL (q) , being the inverses of the 

integrals in (2. l), occur in the subsequent exposition. For brevity the argument of 

these functions is omitted. 

O. Quantities (2.1) are local coordinates on s2 everywhere except the points 
A2p-b (althog u h the uniqueness is lost upon passing through the coordinate 
sections, but this does not affect the search for the critical values of (1.17)). The 

latter points must be investigated separately, Such an investigation is not carried out 

here since it turns out that the resulting relations are included in the general relation 

found under the condition h # p. 

3”. It can be shown that if z E T (S2) is a critical point of mapping (1.17), 

then a tangent vector z’ E T (s2) exists, positioned in the first octant of sphere 

(1.5) and also critical for (1.17), and 1 (z) = 1 (2’). Because of this all the 

computations that follow are carried out for points in the first octant. 
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4”. Parameter s is taken to be strictly positive. The ~omputatio~ simplify sign- 
ificantly when s = 0 . As we mention below, we restrict ourselves to finding how 
the corresponding set Z is obtained from the general case as s --, 0. 

We express functions (1.13) and (1.14) in variables (2. I) (see Notes 1’ and 3’) 

2H = 2 (E” + $*) + T + xp (2.2) 

~[(bc+ca+ah)hp--abc(h+~)1+h+ P-(a+b+c) 

Let us consider the function 
H - crK (2.41 

with an undetermined Lagrange multiplier (the undetermined multiplier before H is 
taken as unity since all critical points of function K prove to be critical also for H ). 

The critical points of (1.17) coincide with those of (2.4) found for all possible valu- 
es of ET, Equating the gradient of (2.4) with respect to ?$, q, F, ?j’ to zero, we 
obtain 

Under the condition f (h) = g (p) = 0 we obtain the following set of critical 
points: 

h = 6, p = C, E’ = 7j’ = 0 (2.7) 

h=a, p=c, E’=Tj’=O 

h=a, p==b, E’=q’=O 

(these are none other than the critical points mentioned of the functions K and H 
themselves). Let 

f” (V + !Ys (P) # 0 (2.3) 

It is easy to show that 
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and, consequently 

a=f=k a#p (2.9) 

,$$.= 2s5 vh? (p) 

q’ = 
2.a VPf (A) 

(h - p) (a - p) ’ (h - p) (h - 6) (2.10) 

With a substitution of values (2.1) Eqs. (2.6) reduce to the one equation 

(cr - ~)a = s2f (cr). Denoting F ((IT) = I/fm 
(h - ~$2 

from the latter we have 

(h - a) ((T - p) = SF ((T) (2.11) 

if p < (J < A (recall that s > 0) and 

(h - IT) ((5. - F) = - SF (c) (2.12) 

if o<p or o>h. 
By U+ (h, p) we denote the set of roots of Eq. (2.11) and by U- (A, p) , the 

set of roots of Eq. (2.12), on which (2.8) and (2.9) are fulfilled and we let 

u+ = hu, u+ (A? p), u- = hu, ZJ- (k IL) 

The substitution of (2.10) and (2.11) into functions (2.2) and (2.3) leads to the 
following parametric equations: 

h=$_ s [F (u) - (3F’ (o)] (2.13) 

k= o+sF’(a)- a+;+c 

where (T ranges set U' . We denote the point of set Z , determined by equaltties 

(2.13), by Z+ (a). 
Let us clarify the corresponding calculation. Entering values (2.10) into (2.2), we 

obtain 

2h = 
S= 

(h - rs)2 (a - p)2 
{abc [3a2 - 2 (h + P) o + hp] - (be + ca $ ab) x 

[2a - (h + p)] 02 + (a + b + c) (52 -A+) aa - [(A + p) a - 2Q] 03} + hp 

The expression within braces can be represented as 

{(h - df (4 4 (‘5 -FL) -&- -f (a) $ [(h - a)(‘5 - @I} G - f (6) (h - 5) (5 - p) 

Using the identity 

hP = a’-- (h - O)(G - P) + d .$ [(h - G) (Q - P)] 

and equality (2. ll), we arrive at the first relation in (2.13). We compute the values 

of function (2.3) at points (2.10) 

2k = (A - o)& - P)” { 
(h-o) ((5 -P) dy - f (6) -$ [(k - 4 (a - NJ} + 

n+p--((a-i-b+4 

With due regard to the identity 
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we find 

2k=2a+ 
sa 

(h-a)@-p) do 3 
X 

Substitution of (2.11) into the equality obtained leads to the second relation in (2.13). 
Similarly it can be shown that to each value [T E U- there corresponds a point 

of set I: , defined by the system 

h’% + 8 IF (0) - oF’ @)I (2.14) 

k: = o-sr;‘(o)- ‘+;+’ 

and denoted x- (0). Finally, 

z=z+uz-, z*= u X’(o) 
uGr* 

N o t e. Equalities (2.13) and (2.14) are particular cases of system (2.5) in [6]. 
This system describes the curve of the multiple roots in a problem with separated varia- 
bles and essentially determines the bf~rcation of certain quadratic integrals. For 

s # 0 we have not succeeded in separating the variables in the problem being studied 
in the present paper (*). We can assume that equations similar to (2.5) in [S] always 
arise in the investigation of mechanical systems admitting of a complete set of quad- 
ratic (not necessarily ~form-~adratic) first integrals in involution. 

3. Construction of set Z for small value8 of con- 
s t a n t a r e a. We mark three modes of set Z , corresponding to (2.7) 

Pa = (l/z (2 - a), l/a (a9 + be)) 
P, = (l/z (9 - 4, l/2 @s2 + cd) 

P, = (l/z ($2 - c), l/z (cs" + ab)) 

Let us clarify the structure of sets U *, taking the quantity s > 0 as sufficiently 
small, In what follows the latter condition is not specially stipulated; the necessary 
estimates are easily obtained each time. Equation (2.11) has no more than three roots, 
and they all lie on segment fb, a) (see Fig. 1). We denote the maximum root of(2.11) 
by CI* (h, p, s) . We have 

(3.1) 

(J* (h, IL, 0) = h 

*) See: Kharlamov, On the separation of variables in the Clebsch problem. Repts. 
Abstr. Sixth Kazakhstan Interinat. Conf. Math. Me&. , Pt. 2: Mechanics. Alma- 
Ata, 1977. 
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Fig. 1 

Lemma. 

max o* (A, p, S) = o* (u, C, s) < u 
h+ 

The assertion is trivial if we note that all parabolas 5 = (h - CT) (o - p) on the 
Co-plane are congruent. In addition, using (3. l), we find 

a-b 
cI* (a, c, s) = a -- s2 a-_c + 0 (9) 

which is less than u for small s. 

The VAWS of (J* (h, p, S) wholly fill up the segment [b, o* (a, c, s)]; there- 
fore, the other roots of (2. ll), existing when p is sufficiently close to b , do not add 
new points into Z+ . 

Finally, U+ = (b, o* (a, C, s)]. The value o = b is not included in U+ 
since either p = 6 or h = b , and condition (2.9) comes into play. The Vdbe 

0 = O* .(a, c, s) iS not formally contained in u+ since (2.8) is violated. However, 

making use of equalities (2.5) and the trivial inequality f (cr* (a, c, s)) # 0, we 
obtain 

lim Z+ (o) = Pb tZ I: 
ofo*(a,c,s) 

(3.2) 

Similar limits are computed below without additional stipulations. 
Let us consider Eq. (2.12). It has exactly one root o* (A, p, s) on the half-open 

interval (b, a] and is the larger of the two roots 

oo (h, p, s) < o” (A, lr7 s) (3.3) 

in the domain o < c. As in the preceding case, it can be shown that the values of 

(3.3) wholly fill up the segment Lo0 (b, c, s), cl, while o* (h, ~1, s) varies within 
the limits b < CT* (b, c, s) < (T* (h, p, s) < a. Therefore 

U- = ]oi, (b, c, s), C) U to.* (b, c, s), a) 
The values o = c, o = a, as well as o = b, being roots of (2.12) when h := 

b , have been excluded in accordance with (2.9). The values o = o. (b, c, s) 

and o = u*(b, c, s) are considered to belong to U- since 

lim Z-(o) = lim Z-(o) = P,EZ (3.4) 
lslUc.!b, C, s) crt%(b, c, J) 

We pass on to the construction of 2. By o, (a, b, s) we denote the root of Eq. 

(2.11) with h = a and p = b , differing from o* (a, b, s). .%ch a root ex- 
is& for small s and is unique (see Fig. 1). We have Z+ (a, (a, b, s)) = 8+ (a* 
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(a, b, 4) = Pc and, consequently, curve Z+ is selfintersecting. On the interval 

CJ, (a, b, s) < (T < cr* (a, b, s) the curve 2 + has two cusps; we can convince our- 
selves of this by solving the equation 1 + SF” (c) = 0 in the form of series in s 
and comparing the solutions with the expansions of the quantities o1 (a, b, s) and 
o* (a, b, S), obtained with due regard to (3.1). The straight line 

h= b(lc+T) (3.5) 

serves as an asymptote to Z+ (a) as o \ b . The curve Z- ((T) has the node P, 
(see (3.4)) and the asymptotes 

h=u kf%) ( as o/la 

h-c /C+%) 
( 

as apt 

The straight lines (3.5) -(3.7) serve as tangents to the parabola 

la++ .+;‘“>s 

at points 
k= b-@+a), k. a--v+4, /7$,= c-(u+b) 

2 2 2 

Finally, we note that the value Go (a, C, S) E u-. In this connection, x- (00 (a, 
c, a)) = Pb, so that by virtue of (3.2) the point Pb is common to Z+ and Z-. 

(3.6) 

(3.7) 

(3.8) 

h 

V 

Fig. 2 

- 

Fig. 3 

Summing up what has been said, we obtain the set shown in Fig. 2. Let s ---f 0. 
For such a convergence point Pa passes into a point of intersection of straight lines 
(3.5) and (3. ‘I), point P, passes into a point of intersection of straight lines (3.6) 
and (3.7). and point P, passes into a point of intersection of straight lines (3.5) and 
(3.6). The segment of curve 2 + between the cusps is “spliced” with the segment of 
parabola (3.8) within the limits 
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b - (c -+ a) a - (b + c) 
2 <k,( 2 (3.9) 

The remainder of 2 degenerates into rays lying on the straight lines (3.5) -( 3.7). AS 
a result we obtain the set shown in Fig. 3. 

N o t e. when s = 0 equalities (2.13) and (2.14) describe only a part of set E 
(to be precise, a segment of parabola (3.6)). This happens because the remaining 
critical values of mapping I are reached in this case at points where f (h) = g (P) 
= 0 and can be found from Eqs. (2.5) and (2.6). 

4. Structure of the integral manifolds. Asalreadynot- 
ed, the connected components of manifolds Ir,h are two-dimensional tori when (k, 

h) E R2 \ X . Let us ascertain the connectivity of Ik,h for various domains in 
Rs \ Z. The bifurcation set divides the plane R2 into four connected domains I 

-1Vwhen s + 0 and into five connected domains I ,I’,II- IV when s = 0. ln 

both cases domain IV contains points with negative coordinates large in absolute value, 
but since functions K and H are bounded from below, set Ik,h is empty for (k, h) 
belonging to domain IV. For large positive k and h rapid rotations obtain in the 
problem being studied, so that the reduced system can be interpreted in the standard 

manner as a perturbation of the reduced system of the Euler -Poinsot problem. In this 

connection the Clebsch integral splits off from the integral of the modulus of the angu- 

lar momentum vector. In the Euler -Poinsot case all critical integral manifolds have 

two connected components [7]. By the Morse theorem 161 this property is preserved 
under small perturbations of the integral mapping. Consequently, for small s # 0 

we have Ilr,f, = 2T2 in domains I and II. Letting s tend to zero and noticing that 
the manifolds being examined remain noncritical, we get that Ik,h = 2T2 in domains 

I, I’, II when s = 0. 
Things become somewhat more complicated in domain III. From considerations 

akin to the Morse theorem it follows that the connectivity of Ir,h is one and thesame 

when s = 0 and when 0 < s < 1 . We can make use of the fact that manifolds 

Ik,h can be found explicitly when s = 0 . Indeed, from (1.16), with clue regard 

to (2.2) and (2.3) with s = 0 , we find 

Therefore, the motion takes place in the domain 

(4.1) 

The condition that (k, h) belongs to domain III is determined by the inequalities 

(3.9) and 

(see Fig. 3); whence we conclude that domain (4.1) consists of two rings 
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(4.2) 

(CL is arbitrary, 2ki = 2k + a + b + c) located symmetrically relative to the 

section of sphere (1.5) by plane vi = 0. When s = 0 the reduced system is nat- 
ural, and the motion with respect to each of rings (4.2) takes place in two directions, 

The ring with a fixed direction of motion yields a connected manifold - a twodimen- 

sional torus - in the phase space. Finally, Ik,h = 4T2. By virtue of what has been 

said above, the latter equality holds for (k, h) belonging to domain 111 and for 

sufficiently small values of s. 

N o t e. By using the parameteric Eqs. (2.13) and (2.14) the set X can be const- 

ructed for arbitrary values of the constant of areas. Beginning with some SO > 0 it 

turns out to be simpler than the set shown in Fig. 2 (the cusps and the selfintersection 

of curve Z+ disappear). The analysis of the corresponding integral manifolds poses 

no difficulty. It seems that the greatest interest is in the investigation of the critical 
integral surfaces since the motions on them are of a nontrivial nature. 

In conclusion we take note of [9] in which the bifurcation functions (1.7) and (1.8) 

are found for the general problem of the motion of a body with a fixed point ina New- 
tonian field. In this case the integral manifolds are three-dimensional, and it is not 

possible to lower their dumension because of the absence of the first integral (1.9). 

The method proposed above carries the investigation of the phase topology through to 
the end in the case when the center of mass coincides with the fixed point. 
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